Bayesian nonparametric estimation of hazard rate in monotone Aalen model
نویسنده
چکیده
This text describes a method of estimating the hazard rate of survival data following monotone Aalen regression model. The proposed approach is based on techniques which were introduced by Arjas and Gasbarra [4]. The unknown functional parameters are assumed to be a priori piecewise constant on intervals of varying count and size. The estimates are obtained with the aid of the Gibbs sampler and its variants. The performance of the method is explored by simulations. The results indicate that the method is applicable on small sample size datasets.
منابع مشابه
A Hierarchical Bayesian Approach to the Estimation of Monotone Hazard Rates in the Random Right Censorship Model
Here we study hierarchical Bayesian estimation of a monotone hazard rate for both complete and randomly right censored data. We propose two methods of computation: Monte-Carlo importance sampling and Laplace approximation techniques. These methods are computationally simple and easily implemented on complex hazard functions. They are compared in simulation studies with uncensored and censored d...
متن کاملA Berry-Esseen Type Bound for a Smoothed Version of Grenander Estimator
In various statistical model, such as density estimation and estimation of regression curves or hazard rates, monotonicity constraints can arise naturally. A frequently encountered problem in nonparametric statistics is to estimate a monotone density function f on a compact interval. A known estimator for density function of f under the restriction that f is decreasing, is Grenander estimator, ...
متن کاملNonparametric Bayesian hazard rate models based on penalized splines
Extensions of the traditional Cox proportional hazard model, concerning the following features are often desirable in applications: Simultaneous nonparametric estimation of baseline hazard and usual fixed covariate effects, modelling and detection of time–varying covariate effects and nonlinear functional forms of metrical covariates, and inclusion of frailty components. In this paper, we devel...
متن کاملApproaches for Semiparametric Bayesian Regression
Developing regression relationships is a primary inferential activity. We consider such relationships in the context of hierarchical models incorporating linear structure at each stage. Modern statistical work encourages less presump-tive, i.e., nonparametric speciications for at least a portion of the modeling. That is, we seek to enrich the class of standard parametric hierarchical models by ...
متن کاملA Bayesian Approach to Estimate Parameters of a Random Coefficient Transition Binary Logistic Model with Non-monotone Missing Pattern and some Sensitivity Analyses
A transition binary logistic model with random coefficients is proposed to model the unemployment statues of household members in two seasons of spring and summer. Data correspond to the labor force survey performed by Statistical Center of Iran in 2006. This model is introduced to take into account two kinds of correlation in the data one due to the longitudinal nature o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Kybernetika
دوره 50 شماره
صفحات -
تاریخ انتشار 2014